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On the spectrum of the linear transport operator in a 
semi-infinite medium 

V Protopopescu 

Institute for Atomic Physics, Bucharest, PO Box 5206, Romania 

Received 14 July 1975, in final form 3 June 1976 

Abetrpct. The linear mono-energetic Boltzmann equation with isotropic scattering is 
considered for a semi-infinite medium in plane geometry and the spectrum of the corre- 
sponding operator under perfectly reflecting, vacuum, generalized or diffusely reflecting 
boundary conditions is explored in the frame of the ‘initial-value problem’. By the 
Hille-Yosida theorem, the existence and uniqueness of the solutions of these problems are 
assured. As a common feature, one observes the absence of a true isolated asymptotic 
eigenmode, the solution displaying, due to the infinite extent of the medium, only ‘transient’ 
modes. 

1. Introduction 

The semi-infinite medium problem in linear transport theory probably goes back to 
Milne in connection with diffusion and radiation in astrophysics. Since then, a consider- 
able effort has been made to solve this problem and connected ones, using alternatively 
the Wiener-Hopf technique, the singular eigenfunction expansion and computational 
methods (Chandrasekhar 1960, KuSkr and Zweifel 1965, Zweifel 1967, Case and 
Zweifel 1967, Williams 1971). 

Apart from the practical interest which it raises, it is very instructive to see in this 
problem one of the simplest natural realizations of an integro-differential equation, 
whose solutions are often not so hard to deduce or, at least, to approximate. 

Let us outline the ideas: we are dealing with the fate of an initial distribution of 
neutrons no(x, p )  present at the time t = 0 in a scattering, non-absorbing, non- 
multiplicative medium filling the left half-space, whose evolution is governed by the 
linear mono-energetic Boltzmann equation with isotropic scattering: 

where 

and all the other symbols have their usual meanings. 

1925 
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In order to be properly posed (and hopefully solvable), the Boltzmann equation (1) 
has to be supplemented with boundary conditions which guarantee the uniqueness of 
the solution in a certain function space. 

Our aim is to show, in the frame of the functional analysis, that a number of 
boundary conditions (accounting more or less for the physical properties of the 
boundary) can be imposed on the Boltzmann operator (2) to convert it into a maximal 
dissipative operator or, in other words, into the infinitesimal generator of a proper 
evolution semi-group. Furthermore, we shall be able to find the spectrum of these 
dissipative operators, or at least to determine some characteristic part of it. 

Let us denote by $19 the Hilbert space L2((-m, 01 X [-1,1]) of the square integrable 
functions of x and p, defined on (-00, O]X[-1, 11 with the usual scalar product and 
norm. 

The boundary conditions we are here concerned with are: 
(i) Generalized boundary conditions: 

n(O, -p )  = a(p)n(O, PI 

O<a(,u)<l  and a(-p)=a-*(p) 

by definition. For a b )  = 1 or a b )  = 0 we obtain as particular cases the perfectly 
reflecting (and also the backward reflecting) and ‘vacuum’ (perfectly absorbing) bound- 
ary conditions respectively. 

(ii) Diffusely reflecting boundary conditions: 
1 

n(0, p < 0)  = n (0, p’)dp’. 

So far, these conditions have been considered only for slab and bounded geometries 
(Lehner and Wing 1955, Belleni-Morante 1970, Angelescu et a1 1974, 1975, 1976a, 
Protopopescu and Corciovei 1976) but none of them have been analysed for the 
time-dependent semi-infinite problem. The difference which will appear here, encoun- 
tered also in the infinite medium problem (Beauwens and Mika 1969), will be the 
absence of true exponential decay modes. 

Let us fist consider the structure of the transport operator A ;  it contains the 
‘unperturbed’ unbounded part -p @ / a x )  - 1 and the bounded perturbation $ 1L1 d p  = 
J. Under the imposed boundary conditions (each of (i) and (ii)), - p ( a / a x )  - 1 turns out 
to be an operator satisfying the hypotheses of the Hille-Yosida theorem (Butzer and 
Berens 1967). As no misunderstanding is possible, let us denote the operator by T- 1 
in all cases and define it respectively on: 

9(T- 1) = {n E Xln absolutely continuous in x, p ( a n / a x )  E X, n satisfies one of the 

by: 

conditions (i) or (ii)} 

an 
ax 

(T- 1)n = -p--n, n E 9 ( T -  1). 

We have to prove: 

(1) 9 ( T -  1) is dense in X; 
(2) T- 1 is closed; 
(3) /l(A-T+l)-’I/G[I/(A +l)],A >-1. 



Linear transport operator in semi - infinite medium 1927 

Indeed : 
(1) 9 ( T -  1) always contains the infinitely differentiable functions of x and p with 

compact support in (-a, O]X [-1, 11 which trivially satisfy all boundary conditions 
(i)-(ii) and which are dense in X. 

(2) The effective solving of the resolvent equation: 

(A - T+ l)n = g, gEX, (3) 
shows in each case that the resolvent set p(T-1)#0. Hence for A ~ p ( T - l ) ,  
(A - T +  1)-' exists as a bounded operator R A ( T -  1) defined on X, and therefore is 
closed. But, if S is a closed operator and its inverse S-' exists, then S-' is closed too 
(Kato 1966); thus T i s  closed. T i s  obviously dissipative, hence: 

llnll . IIgIIs I(n, g ) l s  JRe(n, g ) l s  (A + l)IInI)2 (4) 

and 

A >-1 

that is 

Thus, by the Hille-Yosida theorem (Butzer and Berens 1967), T- 1 generates a 
strongly continuous evolution semi-group Uo(t) of contractive operators for t > 0. 
Their concrete form shows that these operators are positivity preserving. 

Since J is a bounded, positivity preserving perturbation, T- 1 + J  = A remains the 
infinitesimal generator of a strongly continuous semi-group of bounded, positivity 
preserving operators, U(t) ,  whose action can be deduced from the action of Uo(t) by 
means of the perturbation formulae (Kato 1966): 

By these formulae, the existence and the uniqueness of the solution of the initial- 
value problems are ensured. 

Unfortunately, the recurrence expression (6) is not very transparent and the 
features of the solution may remain rather obscure. A more obvious, although less 
complete method, consists in finding the spectrum of A and in deducing from it the 
behaviour of the solution. More precisely, in order to effectively write down the 
solution, one needs the spectral decomposition of the Boltzmann operator A. This is not 
at all a trivial requirement as A is not spectral even in the simplest cases. A less 
ambitious task would be the estimation of the asymptotic behaviours of the solutions in 
the manner initiated by Lehner and Wing (1956). 

In fact, for slab and bounded geometries, the perturbation J, being relatively 
compact with respect to T-1, induces only some isolated eigenvalues of finite 
multiplicities; these eigenvalues are located to the right of the rest of the spectrum so 
their contribution will dominate the asymptotic behaviour. Moreover, by considering 
the equivalent integral equation one can show that the discrete eigenvalues are real for 
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many interesting situations. Unfortunately, this reasoning cannot be followed here 
because J is not relatively compact with respect to T -  1, theorem IV, (5.35) in Kat0 
(1966) on the invariance of the essential spectrum does not apply and the spectrum 
induced by J must be otherwise analysed. 

2. Generalized boundary conditions 

Let us begin our study with the following problem: find the spectrum of the operator A 
with boundary conditions (i) (obviously related to a partial reflection of the neutrons at 
the boundary surface x = O ,  some part of the impinging distribution being 
absorbed). 

We first assert: 

Proposition I. Under conditions (i) the unperturbed operator T -  1 decomposes the 
spectral plane as follows: 

(a) point spectrum: aJT- 1) = 0 ; 
(6 )  residual spectrum: ar( T - 1) = 0 ; 
( e )  continuous spectrum: mc(T- 1) = {A I Re A = -l}; 
(d) resolvent set: p ( T -  1) = @\a,(T- 1). 

Proof. By properly extending no(x, p )  with zero for x >0, the free evolution semi- 
group generated by -p (a/&) - 1 under conditions (i) gives: 

(Vo(t)no)(x, p )  = e-'(no(x -/.a c L ) + a P ) n o ( - x  +N, -p)) .  (7) 

Clearly, 

IIUo(t)nol~ s [ dx [ d p  e-''( lno(x -pt)  l 2  +cr-2(no(-x + pt)l2) S e-2'11n01f. (8) 

These estimations show that the abscissa of the free evolution semi-group is Re A = -1, 
i.e. the operator T -  1 has the right half-plane {A \Re  A > -1) as a resolvent set. A 
similar estimation for: 

0 1 

-cc -1 

(Uo(-t)no)(x, p)=e'(no(x+P~, d + 4 P ) n o ( - X - p I * t ,  -p ) )  (9) 

implies that -T+ 1 has the right half-plane {A IRe A > 1) as a resolvent set and finally 
{A lReA <-l}cp(T-1).  

We see that although Tis not a skew-adjoint operator (9(7+) # 9(P)) its (continu- 
ous) spectrum reduces only to the axis {A I Re A = -1). This can be proved by using the 
well known criterion for (continuous and discrete) spectra (Lehner and Wing 1955) with 
the function set: 

For eliminating the point spectrum, let us remark that any square integrable solution of 
the eigenvalue equation (A + p ( a / a x )  + 1)n = 0 cannot satisfy the boundary conditions 
(i) . 



Linear transport operator in semi-infinite medium 1929 

Finally, let A E ur( T -  l) ,  which implies ((A - T +  l)Ld(T))I # (0). As the domain of 
P: 
9(T*)  = { n  E Xln absolutely continuous in x ,  

 anla lax) E X, 4 0 ,  CL) = a b ) n ( O ,  -P I ,  P E (0,111 
is dense in X, there exists g # 0, g E ((A - T +  1)9(T)) ’n9(P) .  For this g and any 
n E 9 ( T ) ,  ((A - T+ l )n ,  g) = 0 = (n ,  (h- T* + 1)g). As 9 ( A )  is dense in X, (h- T* 
+ l)g = 0 implies h E up(T* - 1). From the domain condition and the reality of the 
operator A, we have up(T* - 1) = up( T -  1 )  = up( T -  1) and 1 E up( T - 1) + A  E 

up(T-  1 )  in contradiction to the initial assumption. 

Let us now return to the perturbed transport operator (2) under a particular form of 
conditions (i). 

Proposition 2. For a ( ~ )  = a = constant, the spectrum of A is: 
( a )  a , ( A ) = 0 ;  
( b )  up(A) u u,(A) = {A I Re  A = - 1) U {A E RI - 1 < A 6 0); 
(c) p(A) = C\(uJA)uudA)). 

Proof. ( a )  The residual spectrum is empty as before. From equation (7) the resolvent of 
T - 1 is derived by Laplace transform for Re A # - 1 : 

I .( P O  

For Re A >-1 we prefer to study the equivalent integral equation 4 = 
JRA(T- 1 ) @ ,  q5 = Jn E L2((-0o, 01) instead of the eigenvalue equation (A - A)n = 0. If 
for some A E {A 1 Re A > - l } ,  1 E p(JRAJ) then A E p(A) and vice versa (Beauwens and 
Mika 1969). 

From equation (1 l), the equivalent integral operator is obtained: 

We shall show that for Re A > - 1, Im A # 0, HA cannot have 1 as an eigenvalue and, 
consequently, A cannot be an eigenvalue of A. 
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Indeed, let us suppose that 4 = HAC$. Then, 

0 (4,4) = (HA+, 4) = (1 - a )(&i)+, 4) + a (H':'+, 4). (13) 

The scalar products appearing in the right-hand side of equation (13) can be 
computed in the Fourier representation. The Fourier transforms of &:'(x, x ' ) ,  
&:)(x, x ' )  are calculated for A > -1, but are valid by analytic continuation also for 
ReA >-1: 

In order to compute the Fourier transform of ~ : ' ( x ,  x ' )  we note that &:)(X, x ' )  is an 
even function of x and x' separately and 

1 k 
$:)(k) =-tan-'- k A + 1 '  

Thus ( 13) becomes 

where 

But, as 

0 

$')(k) = I 4 ( x )  eikx dx 

&2'(k) = / 4(x) cos kx dr. 

-w 

0 

-m 

)r ImA 20, we have Im(l /k)  tan-'[k/(A +l),SO, the reality of the 
spectrum of A is ensured for Re A > - 1. 

The axis { A  I Re A = -1) and the real segment {A E RI -1 < A  C 0) are covered by 
spectra (continuous and eventually-although improbably-discrete) by using respec- 
tively the set (10) and the set: 

where xo is the real solution of the equation [ l/x& + l)] tan-' xo = 1, A E (- 1,0] and 

Now, by considering the actual form of the unperturbed resolvent operator for 
Re A < -1 and constructing the corresponding equivalent integral equation, it can 
easily be seen that {A lReA <- l ) cp(A) .  Finally, for A € { A  lReA > O } ,  ( A  -A)-.' is 
bounded and thus the proof is achieved. 
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For a ( p )  = 1 (perfectly reflecting boundary conditions) the results can be 

Indeed, for a ( p )  = a = 1, the convolution equation (13) is equivalent to 
strengthened in the sense that a,(A) = 0. 

1 k 
&(k) = - tan-'---&(k). k A + l  

But, for A E (- 1,0], ( l / k )  tan-' [k/(A + l)] takes the value 1 on a set of measure zero; 
thus the set { A  E R 1 -1 < A  S 0) does not contain a point spectrum. 

Now let A be on the axis { A  Re A = -1). If -1 +i7 is an eigenvalue of A then 
Re((A -A)n,  n )  = 0 implies lpnII = 0 because Re(Tn, n) = 0. But Jn = 0 leads to 
- 1 + i7 E up( T -  l), which is impossible. 

L 

3. Vacuum boundary conditions 

3.1. Case 1 

For a ( p )  = 0, the conditions (i) describe the evolution in a semi-infinite medium with 
perfectly absorbing boundary. We prefer to study this case separately because some 
interesting features can be pointed out. 

Roposition3. The spectrum of the Boltzmann operator (2) under the boundary 
condition n (0, p < 0) = 0 is: 

(a )  a4A)  = 0 ;  
(b )  a,(A) u a,(A) = { A  1 Re A 6 -1)u {A E RI -1 < A  s 0); 
(c) P ( A ) = Q = \ ( ~ , ( A ) ~ J ~ , ( A ) ) .  

Roof. The left half-plane { A  I Re A s - 1) belongs to the spectrum of A as can be seen by 
considering the function set: 

The rest of the proof is the same as in the previous case. The discrete eigenvalues on 
(-l, O] are eliminated by using the results of the subsequent paragraph. 

We remark that the filling up of the left half-plane with a continuous spectrum is 
discontinuous with respect to a and we shall.give a possible explanation of this fact in 
P 4. 

3.2. Case2 

For vacuum boundary conditions the fact that T is not skew-adjoint appears strongly 
because its spectrum fully covers a certain left half-plane. This is, surely, a disappoint- 
ing feature which drastically removes the hope that A can ever allow for a spectral 
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decomposition. This fact is not so unfortunate for the slab because of the existence of 
some isolated eigenvalues in the right part of the spectrum. A Riesz integral can be 
performed on this part, displaying at least an exponential asymptotic behaviour of the 
distribution. A slightly modified point of view introduced by Lehner (1962) in 
connection with the slab problem, can greatly simplify the spectrum. Indeed, let us 
consider the following problem instead of the one treated in § 3.1. 

Find the spectrum of the transport operator considered as an operator in 
L2((-0o, CO) x [-1,1]) and defined by: 

a 1 ’  
ax 2 -1  

A I  = -p-- 1 + X ( - ~ , O I ( X ) -  d p  

where x ( - ~ ,  ol(x) is the characteristic function of the semi-axis (-CO, 01: 

{: otherwise. 

x E (-CO, 01 
(23) XC-~,OI(X) = 

Al  has the same action as A in the moderator while in the vacuum space the 
perturbation is dropped. Although it is expected (and proved) that the two 
operators give the same evolution (physically, the ‘facts’ described by (1) with vacuum 
boundary conditions and by (22) are the same inside the moderator), their spectra 
differ. We assert: 

Proposition 4. The spectrum of Al  is: 
(a )  aAA1) = 0; 
(6) gp(Ad = 0 ; 
(c) crc(A1) = {A I Re A = -1) U {A E RI -1 < A  s 0); 
(4 = d=bC(Al). 

Proof. As defined on &((-CO, CO) X [- 1, l]), -p @/ax) becomes a skew-adjoint operator 
T and the spectrum of T- 1 is {A 1 Re A = -1) (see the set (10)). 

The rest of the proof follows mainly as in the preceding section, the only difference 
being that the resolvent of T- 1 is: 

and consequently 

t 

For eliminating the point spectrum on the real segment (-1, 01, one has to observe 
that the distributions being considered are in L2(-0;), CO); the equivalent integral 
equation can be written: 
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and we can naturally apply the Fourier transform obtaining 

1 k 
$ ( k )  = - tan-’-$(k). k A + 1  

Here the same argument is used as in 9 2. 
This also furnishes a proof that the discrete spectrum is eliminated on the real 

segment (-1,0] even for vacuum conditions. Let us suppose to the contrary: if 
A E ( - 1 ,  O] is an eigenvalue of A with corresponding eigenfunction n, by properly 
extending this function for [0, CO) with 

one would find that 

x < o  
.=(;, x > o  

is an eigenfunction of A l  corresponding to the same eigenvalue, which is impossible 
because Al has no eigenvalues on the real segment (-l, O]. We can use the same 
argument as that used for perfectly reflecting boundary conditions to prove that 
{A I Re A = -1) does not contain a point spectrum of A l  and therefore of A .  

3.3. Case3 

This ‘simplified’ problem suggests a more natural way of writing the evolution 
equation. Indeed, the operator AI describes a ‘normal’ evolution inside the moderator 
and a ‘free damped’ evolution outside. T is responsible for the ‘free’ part and in fact 
represents the infinitesimal generator of the translations in the x direction with velocity 
p. On the other hand, the minus unity operator retained by Lehner in his original 
approach for the slab, is responsible for the ‘damped’ part. But if the right half-space is 
a vacuum, it cannot trap particles and, generally speaking, there is no material which 
would be characterized only by an ‘in-part’ of the scattering cross section and not by an 
‘out-part’ too. 

For such a medium the detailed balance principle (in a very rudimentary form!) 
would not hold. The only physical interpretation for -1 would be that it represents an 
absorption cross section equal to the total scattering cross section of the moderator. If, 
however, the right half-space is a vacuum, one is led to consider in L2((-00, 00) x 
[ - 1 ,  11) the evolution equation: 

with x ( - ~ , ~ I ( x )  defined by equation (23). This problem, although academic, displays 
some very important features which can appear in solving linear evolution equations 
(and, particularly, linear transport equations) and which are worth pointing out. 

As -p (a /&) ,  considered on infinitely differentiable functions with compact support 
in x ,  has a unique skew-adjoint extension T in L ~ ( ( - c o ,  m)X[-l, l]), we have 
Re(Tn, n )  = 0 and the obvious estimations /[(A - A ) n l ( b  -(Re A + 1)llnll and 
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(I(A - A)n(( 3 Re A Ilnll. Now, we shall prove that {A I Re A = -1) u {A I Re A = 0) U 

{A E Iw( -1 < A  s 0) c a,(A2). Indeed, let us use respectively the function sets 

2 x S 0 ;  A=-l+iT;  S S p s S ;  6+0 

otherwise 

1 -i+/p) e-(x2/2) e - ( l / ~ x * )  

fb"(x,cL)= (29) 

S+O - i T ( x / p )  - ( x z / ~ )  e - ( 1 / ~ x 2 )  2 e x 3 0 ;  A = i r ;  S S p S S ;  

Le 
(30) 

otherwise 
f'62'(x, cc) = 

and the set (15). The verification is straightforward and the result striking: the 
Boltzmann operator A2 has, as continuous spectrum, the real segment [-1, 01 and two 
infinite lines which enclose between them a whole strip of the spectral plane. This strip 
cannot be analysed, at least by standard methods, as it is completely bordered by 
spectral lines. 

The key point for pushing forward the analysis is the remark that the spectrum in 
itself may contain redundant information and full knowledge of it is not always 
necessary (nor sufficient) for solving the problem. 

In fact, for initial distributions restricted to the left half-space (the only ones with 
physical significance for our problem), the free evolution semi-group with vacuum 
boundary conditions gives: 

(Vo(t)no)(x,  P )  = e-'no(X -wt, p )  

tub')(t)no)(x,  PI = e-'no(x -N, CL) 

x ,  x -pt E ( -oo,O] (3 1) 

while in the Lehner approach: 

x -pt E (-CO, 01. (32) 

In the present case, using the usual definitions of the characteristic functions ~ ( ~ , ~ ~ ( p ) ,  
x [ - I , o ) ( ~ ) ,  x[o,,)(x), the evolution semi-group is: 

(v 'o)( t )no)k P )  

11 I ( - x + r O / p  
= D r ( o , l ] ( ~ ) c u ( - ~ , o l ( ~ )  e-r +xro,&) e 

from which the resolvent: 

is evidently bounded for Re A > -1 as before; i.e. by considering the same physical 
problem (no with support contained in (-oo,O]x[-l, l]), the spurious part of the 
spectrum disappears. 
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By projecting the semi-group (33) only on the left half-space one obtains exactly the 
semi-group Uo(t): 

x(-o3,ol(x)( u b 2 ” o k  P )  

= e-‘no(x -wt,  p )  = (Wt)no)(x, p )  x ,  x -pt E (-a, 01. (35) 

The real, perturbed semi-group has the same property on account of the com- 

(36) 
With this reduction, the analysis can be carried out as in the previous case, 

concluding that in the moderator all the three semi-groups considered in $00 3.1, 3.2 
and 3.3 give identical solutions. This makes the determination of the spectrum of A2 
superfluous and qualitatively relates the presence of the spurious part of the spectrum to 
the distributions evolving only in the right half-space at all t (this assertion is not quite 
exact). 

mutativity relations: 

Cu(-aAO](X), 31 = [ v b 2 ’ ( r ) ,  x(-m,o](x)l= 0. 

4. D W l y  reflecting boundary conditions 

As in the generalized case with a(p )  # constant, the results are not as stringent as for the 
previous problems; however, in spite of their poorness, these results display an 
interesting and instructive feature, specifically, the presence of the spectrum in the 
whole left half-plane, as for the vacuum conditions. 

Proposition 5. For the operator (2) under conditions (ii), 

{A I Re A 6 -1) u {A E RI -1 < A S 0) c a(A)  and {A 1 Re A > 0)  c p(A). 

Proof. The free evolution semi-group gives: 

which for Re A > - 1 leads to the unperturbed resolvent: 

The inclusion {A I Re A > 0) c p ( A )  follows as before. 

c cr(A), while for the left half-plane we use the set (A = p + i7, /.3 < - 1): 
Moreover, the set (19) can be used again to prove the inclusion {A E RI - 1 < A s 0)  
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which obviously satisfy (ii) and for which we have the estimations: 

Why this apparently unexpected presence of the spectrum in the whole left 
half-plane? For vacuum conditions this is related to those initial distributions located 
very close to the boundary surface x = 0 which leave the medium, no matter how small 
the time interval. This ‘disappearance’ of the distributions prints an irreversible 
character on the evolution; this is governed by a semi-group, contrary to the case of 
reflecting or generalized boundary conditions, or of the Lehner treatment, when the 
evolution is governed by a group. The free unperturbed group generated by T, is unitary 
for the perfectly reflecting boundary conditions and for the Lehner case and non- 
unitary for the generalized boundary conditions, but in any case a reversed evolution 
can be completely determined. 

The diffusely reflecting boundary conditions have, in common with the vacuum 
ones, the loss of ‘memory’ of the system at the surface x = 0. The situation is the same, 
independent of whether the neutron distribution leaves the system or is returned to it as 
a diffusely reflected packet; the original distribution cannot be reconstructed by 
changing the sign of the time (although the diffusely reflecting boundary conditions 
preserve the number of particles-no particle can escape from the medium) and this is 
the reason for the appearance of the spectrum in the whole left half-plane. 

5. Conclusions 

We have studied the spectrum of the Boltzmann operator (2) with several boundary 
conditions appropriately accounting for physical properties of the boundary surface of 
the medium. Some of them can actually appear (single or mixed) in the transport theory 
of neutrons, others can perhaps be of some importance for the transport of other 
particles or light. 

Having proved in general the existence and uniqueness of the solution of the 
initial-value problem for a large variety of boundary conditions, the knowledge of the 
spectrum could allow, if not for a proper spectral decomposition of the operator and 
thus the effective solution, at least for the finding of its asymptotic behaviour. 

The common feature of the initial-value problem, proved for many cases and 
conjectured for the others, is that in semi-infinite media the distributions behave 
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essentially as in the infinite medium (Beauwens and Mika 1969) displaying only 
transient modes and no true asymptotic exponential modes. 

The presence or absence of the continuous spectrum in the left half-plane {A I Re A < 
- 1) is related to the ‘memory-loss’ of the system at the boundary surface x = 0. 

Finally, the possibility of conveniently including these transients in the solution of 
the time-dependent problem is not trivial and is related to the possibility of some 
generalized spectral decomposition of the Boltzmann operator which holds in a sense 
only if the closure of - p ( a / a x )  is a skew-adjoint operator (Angelescu ef a1 1976b). 
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